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Return Horizon and Mutual Fund Performance 
 

Abstract 
 

Investment performance depends on return measurement horizon.  The percentage of U.S. equity mutual 
funds that outperform the SPY is 46.9% in monthly returns, 39.9% in annual returns, and 29.5% in full-
sample (1991-2008) returns.  Further, true alphas vary with return measurement horizon, and the effect of 
horizon on alpha is asymmetric in beta.  We introduce and implement methods to estimate long-horizon 
alphas and betas.  Compared to a benchmark of 40.9% in monthly returns, the percentage of funds with 
positive alpha estimates decreases to 16.7% (increases to 49.1%) at long return measurement horizons for 
funds with high (low) estimated monthly market betas.       

 
 

 (JEL G10, G23)  



1 
 

1. Introduction  

 The majority of the research that considers investor outcomes studies rates of return that are 

measured over relatively short time horizons, most often monthly.  However, the parameters that describe 

the distribution of returns and that are relied on by investors to guide portfolio selection decisions and 

researchers to test asset pricing models, including means, variances, skewness, and covariances, not only 

depend on the horizon over which returns are measured, but are generally not proportionate to the return 

horizon or to each other.1   

It may be tempting to reason that, since investors can periodically rebalance their portfolios, the 

sole focus should be on returns measured over agents’ rebalancing horizons rather than their investment 

horizons.  Indeed, Samuelson (1969) proposes that expected-utility-maximizing investors optimally 

rebalance to maintain constant investment weights that depend on single-period parameters, regardless of 

the number of periods in the investment horizon.  However, Mossin (1968) shows (and Samuelson 

acknowledges), that this result is obtained only in the special case where investors maximize the 

expectation of a power utility function, while also requiring that returns are independently and identically 

distributed over time.2  Objective functions can differ across investors, and both investment and 

rebalancing horizons may not only differ across investors but can stretch to decades.3  Further, the 

parameters of multiperiod portfolio return distributions (means, variances, covariances, skewness, etc.) 

differ from the parameters of single-period return distributions, with or without periodic rebalancing.  We 

know of no reason to think that parameters that describe the distribution of monthly returns are 

necessarily the most relevant to investors with disparate objectives and investment horizons. 

                                                 
1 See, for example, Arditti and Levy (1975), Levhari and Levy (1977), Handa, Kothari and Wasley (1989), 
Longstaff (1989), Lee, Wu and Wei (1990), Levy and Levy (2011), and Farago and Hjalmarsson (2019).   
2 An additional complexity relates to market clearing.  Investors in aggregate must hold the market portfolio, and 
therefore cannot rebalance to constant (or any other non-market) weights.  
3 For example, Ameriks and Zeldes (2004) report that nearly half of participants in a sample of defined contribution 
retirement plans made no changes to their allocations over a ten-year period.    
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 Theory, particularly with regard to asset pricing models, provides little guidance.  The Capital 

Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) focuses on expected returns and beta 

coefficients measured over a single period of unspecified length.  More recent factor models, such as the 

five-factor model of Fama and French (2015), the Q-factor model of Hou, Xue, and Zhang (2015) and the 

four-factor model of Carhart (1997), are motivated in part based on their ability to explain aspects of the 

empirical distribution of monthly returns, but without explicit consideration of whether the monthly 

horizon is the most relevant or informative.    

 In this paper, we focus attention on the information obtained when returns are measured over 

differing horizons, focusing in particular on mutual fund performance.4  The literature that studies mutual 

fund return performance is vast, and numerous important empirical regularities have been documented 

(see Cremers, Fulkerson, and Riley, 2019, for a recent survey).   However, these studies, like the broader 

literature, have mainly focused on return data measured over short (usually monthly) horizons.   We show 

that measures of mutual fund performance, including simple comparisons of fund returns to market 

benchmarks as well as more sophisticated measures such as Jensen’s alpha, that are based on longer 

return horizons contain substantively different information regarding mutual fund performance than 

measures constructed from monthly returns.     

 Importantly, our emphasis is not on forecasting (e.g. the degree to which returns measured from a 

short sample period are informative about returns measured over a subsequent period), learning (e.g. the 

Bayesian updating of parameter estimates as the sample becomes larger with the passage of time), or 

                                                 
4 To our knowledge, we are the first to consider return horizon in the context of mutual fund performance.  Further, 
the prior literature has mainly assessed the effect of return horizon over relatively short periods ranging from daily 
to annual, where informational and trading frictions are most relevant.   Kothari, Shanken, and Sloan (1995) estimate 
a positive return premium associated with CAPM betas when returns are measured at the annual horizon, but not at 
the monthly horizon.  Gilbert, Hrdlicka, Kalodimos, and Siegel (2014) estimate alphas and betas for equity 
portfolios over horizons ranging from daily to quarterly, and argue that differences across horizon are explained by 
differences in firms’ opacity, i.e., in investors difficulty in assessing the value implications of events.   Boguth, 
Carlson, Fisher and Simutin (2016) focus on slow information diffusion as an explanation for differing mean equity 
portfolio returns for horizons ranging from daily to annual.  Kamara, Korajczyk, Lou, and Sadka (2016) also focus 
on heterogeneous stock price reactions and assess the extent to which systematic factors earn risk premia at some 
horizons from monthly to biannual, but not others.  Our study differs from these because we focus on returns 
measured over longer horizons where these frictions are less important, to highlight the effect of horizon per se. 
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changes in parameters as the economy evolves (as in conditional asset pricing models).  Rather, we focus 

purely on the effects of altering the time interval over which returns are measured, e.g. from monthly to 

annual to decadal.  Our theoretic analysis focuses on a stable probability distribution, while our empirical 

analysis focuses on a fixed sample of return data.  Despite the fact that each long-horizon return is 

obtained by simply compounding the relevant shorter-horizon returns, we show that performance 

measures constructed from long-horizon returns contain notably different information than measures 

constructed from monthly returns.  

 We study U.S. equity mutual funds for the 1991 to 2018 period.  Initially, we focus on a simple 

comparison of compound fund returns to compound market proxy returns, showing that the percentage of 

funds that outperform market benchmarks decreases with return horizon.  In the monthly data, equity 

mutual fund returns exceed the matched-month return to the SPY ETF (taken as a proxy for the overall 

market that investors could have captured) for 46.9% of observations.  The percentage of sample funds 

that generate compound returns that exceed the compound return to the SPY decreases to 39.9% at the 

annual horizon, 39.2% at the decade horizon, and 29.5% at the (fund-specific) lifetime horizon.    

 Prior researchers, including Levhari and Levy (1977), Handa, Kothari and Wasley (1989), 

Longstaff (1989), and Kothari, Shanken, and Sloan (1995), have observed that beta coefficients depend 

on the horizon over which returns are measured.  While several of these papers considered the role of 

return horizon in tests of the CAPM, they did not emphasize the related point that alphas also depend on 

the horizon over which returns are measured.5  We show that alphas not only depend on return 

measurement horizon, but that the sign of the short-horizon (e.g. monthly) alpha does not necessarily 

reveal the sign of the longer-horizon alpha.6  We also develop the testable implication that the effect of 

                                                 
5 Levhari and Levy (1977) show how betas vary with horizon and note that tests of the CAPM that are conducted 
using returns measured over a horizon that differs from the model’s true horizon are biased.  Handa, Kothari and 
Wasley (1989) show that the estimated return premium associated with firm size is sensitive to the length of return 
interval used to estimate beta. However, these papers do not develop expressions for true alpha as a function of 
return measurement horizon.      
6 We focus on single factor market models and simple comparisons of fund returns to market benchmarks.   This 
reflects our understanding that practitioners most often focus on such relatively simple measures, as well as the 
evidence indicating that relatively simple measures such as Morningstar rankings (Ben-David, Li, Rossi, and Song 
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return measurement horizon on alpha is asymmetric: an asset’s short-horizon alpha overestimates 

(underestimates) its long-horizon alpha when its true beta is greater (smaller) than one.  Importantly, these 

results pertains to parameters, and hold even in the absence of estimation issues.   

 The estimation of fund alphas and betas when returns are measured over longer horizons presents 

substantive challenges.  We introduce an empirical procedure for estimating long-horizon betas that is a 

modification of the formulas introduced by Levhari and Levy (1977), guided by the outcomes of 

simulations. We show that the estimates of annual return betas obtained by our modified Levhari and 

Levy approach are quite similar to the noisy but unbiased (under standard assumptions) beta estimates 

obtained by implementing standard time series regressions in annual returns.   Using the beta estimates 

obtained by the modified Levhari and Levy method we show that, consistent with theory, long-return-

horizon alphas not only differ from short-return-horizon alphas, but that the differences are asymmetric 

depending on estimated short-horizon betas.  For the full sample, 40.9% of alphas estimated from 

monthly returns (using the SPY as the market aggregate) are positive, while 35.8% of alphas estimated 

from long-horizon (full-sample) data are positive.   More striking, among mutual funds with a monthly 

return beta estimate less than one, the percentage of funds with positive long-horizon return alphas 

increases to 49.1%, while among funds with a monthly return beta estimate greater than one the 

percentage of funds with positive long-return horizon alphas decreases dramatically to 16.7%.  Focusing 

on the subset of funds with positive alphas estimated from monthly returns, almost all (93.3%) have 

positive long-horizon alpha estimates if the monthly beta estimate is less than one.  In contrast, despite 

their positive monthly return alpha estimates, only a minority (45.4%) of these funds have positive long-

horizon alpha estimates if their monthly beta estimate is greater than one.    

 These results imply that a given fund’s risk-adjusted performance can be abnormally positive 

over short return measurement horizons and abnormally negative over long return measurement horizons 

(or vice versa), even when results are based on a single sample.  The results therefore imply that the 

                                                 
(2019) or CAPM alphas (Barber, Huang, and Odean, 2016 and Berk and van Binsbergen, 2016) better predict funds 
flows as compared to measures that adjust for multiple factor beta exposures. 
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degree to which returns are abnormal cannot be evaluated independent of investors’ horizons; some 

managers (particularly those with low short-horizon betas) may have a relative advantage in generating 

alpha for investors who are concerned with long-horizon returns, while others (particularly those with 

large short-horizon betas) are more likely to generate positive alphas for investors who are focused on 

short-horizon outcomes.   Further, measures of mutual fund performance that are based on short-horizon 

returns may be uninformative or even misleading regarding fund performance over the longer horizons 

that may be relevant to many investors. 

Our goal in this paper is to demonstrate the importance of return measurement horizon in simple 

settings, including the direct comparison of fund returns to benchmark returns and the estimation of 

single-factor alphas.  It would be of interest to extend the analysis to multiple systematic risk factors.  It 

would also be of interest to assess the potential interaction between time variation in relevant parameters 

(as, for example, in a conditional asset pricing framework) with the impact of measuring returns over 

alternative horizons.  Finally, it would be of interest to apply our results to the mutual fund forecasting 

literature.  In particular, is the evidence that estimated alphas persist out-of-sample sensitive to return 

measurement horizon?  

Perhaps the most intriguing issues relate to the question of which return measurement horizon is 

most relevant, both to investors and to researchers who study the capital markets.  Consider, for example, 

a pension fund with an investment horizon that stretches to decades, where managers are compensated 

based on comparisons of fund returns to benchmark returns measured at an annual horizon, and where the 

investment committee meets and potentially recommends changes in investment positions on a quarterly 

basis.  Should the focus be on return parameters estimated at the quarterly, annual, multi-decade, or some 

other horizon?  Some relevant evidence might be obtained by assessing the return measurement horizon 

that best explains mutual fund performance-flow relations.  Additional evidence might be provided by 

assessing the return measurement horizon for which various asset pricing models perform best.   
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2. Data and Sample Construction   

 We obtain data for the 1991 to 2018 period from the CRSP survivorship bias free Mutual Fund 

Database.  We begin our study with data from 1991, as monthly data regarding fund total net assets 

(TNA) is largely unavailable for earlier periods.  We focus on domestic equity funds (CRSP fund style 

code starting with “ED”), while excluding exchange traded funds, funds that take short positions (CRSP 

fund style “EDYS”), commodity funds (CRSP fund style “EDSC”) and real estate funds (CRSP fund 

style “EDSR”).  We also exclude target date funds, since these hold substantial non-equity positions.7  We 

further exclude hedged funds (CRSP fund style of “EDYH” and Lipper fund style code of “LSE”), market 

neutral funds (CRSP fund style “EMN”) and absolute return funds (CRSP fund style “ABR”).  We also 

exclude funds that have fewer than twelve months of non-missing return data.     

 Prior studies (e.g., Elton, Gruber, and Blake, 2001) have documented the presence of errors in the 

CRSP mutual fund data.  We manually verify and when necessary correct monthly return observations 

that differ from the value-weighted market return in the same month by 30% or more, using data from 

Datastream or Yahoo Finance.  Since missing TNA data may be indicative of additional data integrity 

issues, we also verify and when necessary correct return observations that differ from the same-month 

market return by 5% or more if TNA data is missing in the current or prior month.    

 Many mutual funds have multiple share classes.  We aggregate return and expense ratio data 

across share classes based on a weighted average of TNAs when classes have a common Wharton 

Financial Institution Center Number (WFICN) in the WRDS mutual fund links file.  For sample mutual 

funds without a WFICN number, we identify share classes of the same fund based on fund names 

following Berk and van Binsbergen (2015).8   

                                                 
7 To identify target date funds, we first extract a list of funds whose name contains one of these numbers – “199”, 
“200”, “201”, and so on until “210”, but that do not contain “Russell 2000” or “Russell2000”.  Among these, we 
exclude funds with names that contain any of “retirement”, “retire”, “target”, “lifetime”, “lifecycle”, “lifepath”, 
“term”, “destination”, “freedom”, “2005”, “2010”, “2015”, and so on until “2070”.  In addition, we manually 
identify an additional 256 funds (of the remaining 302 initially listed) as target date funds based on visual 
examination of their names and fund profiles.     
8 When funds have multiple share classes CRSP fund names contain “/” or “;”.  The part of the fund name after the 
last “/” or “;” refers to the sub share class, while the prior part refers to the main fund name. For example, the fund 
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Table 1 presents summary statistics regarding the sample, which contains 7,689 domestic equity 

mutual funds.9  Of these, 602 are index funds.  The sample includes 1,019,541 fund/months, and TNA 

data is available for 1,005,705 of these.  The pooled (across funds and years) mean monthly fund return 

(net of fees and expenses) is 0.63%, while the mean monthly expense ratio is 0.09%.  Mean TNA is 

$1.085 billion.  However, the TNA distribution is strongly positively skewed, reflecting the presence of a 

few very large funds, and the median TNA is $154 million.  The pooled distribution of monthly fund 

returns is not strongly skewed; the sample skewness coefficient is -.355, and the median return of 0.661% 

is similar to the mean return of 0.631%.  However, as documented below, long-horizon mutual fund 

returns are positively skewed, and this skewness is important in understanding the distribution of long-

horizon mutual fund performance.  

Figure 1 displays the number of funds contained in the sample and total TNA for sample funds on 

an annual basis.  The number of domestic equity mutual funds increased rapidly from about 1,000 in 1991 

to about 4,000 in 2001, remaining relatively constant thereafter.   However, sample funds’ aggregate TNA 

not only rose rapidly in the early years of the sample period, from about $200 billion in 1991 to over $2 

trillion in 2001, but continued to increase thereafter, to over $5.5 trillion in 2018.   

To assess the performance of mutual funds at various horizons we compute the compound (i.e., 

buy-and-hold) return to the fund.  Since the return data includes any dividends or other cash distributions, 

the compound return implicitly assumes that dividends and distributions are reinvested in fund shares.  

For comparison, we compute compound returns to one-month US Treasury Bills, to the value-weighted 

market portfolio of CRSP common stocks, and to the SPY ETF.10  The periods over which benchmark 

                                                 
named “MainStay Funds: MainStay Small Cap Growth Fund; Class A Shares” is Class A of the MainStay Small 
Cap Growth Fund; the fund named “Alliance Strategic Balanced Fund/A” is Class A of the Alliance Strategic 
Balanced Fund.  We rely on this naming convention to combine multiple share classes. 
9 While we exclude international equity funds from our main analysis, we report some results for international funds 
in the Internet Appendix.  Figure A1 there shows that international funds share of total industry net assets grew from 
about 15% in the early years of our study to near 30% in later years.    
10 The value-weighted market return is obtained from Professor Kenneth French’s website.  
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returns are computed are always matched to fund returns.  If, for example, a given fund has return data for 

105 months during a given decade then benchmark returns are computed based on the same 105 months.   

Value-weighted market returns comprise a natural and widely-used benchmark.  However, 

investors cannot directly capture the value-weighted market return, since transaction costs would be 

incurred in the requisite trades at the times of dividends, stock repurchases, or new equity issues, and fees 

must be paid on index funds that seek to track the overall market.  We therefore include the SPY ETF as 

an alternative market benchmark.11  Since SPY returns are net of any fees and other expenses, investors 

could in principle have captured compound SPY returns.    

We also construct indicator variables that equal one when a given fund outperforms a benchmark 

over a specified time period, and zero otherwise.  The cross-sectional means of the indicator variables 

measure the percentage of fund observations that outperform the indicated benchmarks.  Table 1 reports 

the means of these indicator in the monthly return data.  Only a slight majority (54.9%) of the fund/month 

return observations exceed the one-month Treasury bill return in the matched month, reflecting the high 

volatility of equity returns.  A slight minority, 46.3%, of fund-month returns exceed the value-weighed 

market return during the same month, while 46.9% of fund-month returns exceed the SPY ETF return 

during the same month.    

 

3. Mutual Fund vs. Market Returns at the Annual, Decade, and Lifetime Horizons   

We assess equity mutual fund performance when returns are measured at four horizons: monthly, 

annual, decade, and “lifetime.”  The last designation refers to all months that the fund is contained in the 

sample, and does not literally equal the lifetime of the fund in those cases where a fund was present prior 

to the 1991 sample start date or for the funds that continue after the 2018 sample end date.  In those cases 

where a given mutual fund has data for only a portion of a given period the computation pertains only to 

the months with data, as the alternative of computing returns only for funds with data for the entire period 

                                                 
11 The SPY ETF started trading in January of 1993. For 1991 and 1992, we rely on the return on the Vanguard 
S&P500 index fund (ticker symbol VFINX) instead.    
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would introduce survivorship biases.  While Table 1 reports summary statistics for monthly returns, 

Panels A, B, and C of Table 2 present results at the annual, decade, and lifetime horizons, respectively.   

3.1 Mutual Fund Performance at the Annual Horizon   

Panel A of Table 2 shows the database contains return data for funds for an average of 11 months 

per year.  The pooled mean annual return is 7.64%.   By comparison, the mean matching SPY return 

(pooled across funds and years) is 8.42% and the mean value-weighted market return is 8.87%.  Annual 

fund returns are moderately positively skewed; the estimated skewness coefficient is 0.742, and the 

median fund return is 6.97%, as compared to the mean return of 7.64%.    

Only a minority of funds outperform market benchmarks at the annual horizon.  In particular, 

38.5% outperform the value-weighted market portfolio and 39.9% outperform the SPY ETF.  By 

comparison, 60.3% of funds outperform one-month US Treasury Bills in a given year.   Each rate of 

outperformance differs significantly from a benchmark of 50%, with p-values less than 1%.   

Figure 2 displays the percentage of funds that outperform the market benchmarks and Treasury 

bill benchmarks on an annual basis.  The majority of funds underperform the market benchmarks in most, 

but not all, calendar years.  In particular, more than half of funds outperformed market benchmarks in 

2001 and 2009.  The percentage of funds that outperform Treasury bills vary dramatically across years, 

from essentially zero in 2008 to over 90% in 1991, 1995, and seven of the ten years from 2009 to 2018.  

We also assess the performance of mutual funds when we compound pre-fee returns.  The mean 

pre-fee annual return to sample mutual funds is 8.76%, which exceeds the mean matching SPY return of 

8.42%.  Nevertheless, only a minority, 46.9%, of funds outperform the SPY even on a pre-fee basis.   

3.2 Mutual Fund Performance at the Decade Horizon   

Panel B of Table 2 reports results based on decade horizon buy-and-hold returns.12  On average, 

return data is available for 68 months per decade, and the mean fund return pooled across funds and 

                                                 
12 Since our sample spans twenty-eight years, our “decades” do not contain exactly ten years.   Specifically, we 
focus on the periods 1991 to 1999, 2000 to 2008, and 2009 to 2018.   
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decades is 77.42%.  By comparison, the mean SPY return over matched months of the same decade is 

89.86% and the mean value-weighted market return over the same months of the same decade is 93.86%.  

Decade returns to mutual funds are more highly skewed than annual returns; the estimated skewness 

coefficient for decade returns is 2.993 (compared to 0.742 for annual returns), and the median decade 

fund return is just 24.18%, well below the mean of 77.42%.13           

Equity mutual funds outperform market benchmarks less often at the decade horizon as compared 

to the annual horizon.  In particular, 34.9% of funds outperform the value-weighted market at the decade 

horizon, as compared to 38.5% at the annual horizon.   Only a minority (39.2%) of equity funds 

outperformed the SPY at the decade horizon.  While the mean pre-fee decade-horizon return to sample 

mutual funds of 91.22% exceeds the mean matching SPY return of 89.86%, only 48.8% outperform the 

SPY even on a pre-fee basis.   

3.3 Mutual Fund Performance When Returns are Measured over Long horizons    

Panel C of Table 2 reports corresponding results when returns are measured over each fund’s full 

lifetime in the database.14  Return data is available for all of the 336 sample months for only 375 of the 

7,689 funds.  On average across funds, return data is available for 133 months (median of 111 months).  

The mean lifetime compound return for domestic equity funds is 191.17%.  By comparison, the mean 

matched-period compound return to the SPY is 204.89% and the mean matched-period compound return 

to the value-weighted stock market is 224.10%.   

The estimated skewness coefficient in the distribution of lifetime equity mutual fund returns is 

4.56.  Reflecting this skewness, the median lifetime return to domestic equity mutual funds of 74.26% is 

substantially less than the mean compound return of 191.17%.  Seventy six percent of domestic equity 

funds outperform one-month Treasury bills over their lifetimes.  Stated alternatively, a surprisingly high 

                                                 
13 Arditti and Levy (1975), Bessembinder (2018), and Farago and Hjalmarsson (2019) all observe that the 
compounding of random short horizon returns on a given asset introduces positive skewness into long horizon 
returns (even if short horizon returns are symmetric).  The results here verify that compounding generates substantial 
skewness in longer horizon returns for the periodically rebalanced (based on managers’ disparate objective 
functions) portfolios that underlie mutual fund returns as well. 
14 Table A1 in the Internet Appendix breaks out full sample results for deciles of funds with various characteristics. 
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share, twenty-four percent, of equity mutual funds fail to outperform one-month Treasury bills over their 

lifetimes.   Only 23.8% of domestic equity funds outperform the value-weighted market return over their 

lifetimes.  Over their lifetimes, only 29.5% of domestic equity funds outperform the SPY ETF, a 

benchmark that could have been captured by any investor who simply held the SPY and reinvested 

dividends.  

The mean pre-fee lifetime return to sample funds is 257.25%, which exceeds not only the mean  

matched-horizon return to the SPY of 204.89% but also the mean matched-horizon return to the value-

weighted market of 224.10%.  Nevertheless, only a minority of funds, 45.1% when comparing to the SPY 

and 38.6% when comparing to the value-weighted market, outperform these benchmarks.  These results 

imply that the low rate of outperformance vs. market benchmarks when returns are measured over long 

horizons is not simply attributable to the accumulated effect of fund fees.  Rather, it is primarily 

attributable to the skewness that is observable in the distribution of long-horizon returns but that is not 

observable in monthly returns.       

In Panel D of Table 2 we report lifetime compound returns for four groups of funds, delineated 

based on the length of time that the database contains return data for the fund.  While information on fund 

life would not have been available to investors ex ante, the results are informative regarding conditional 

return distributions.  The four groups are funds with lives of 1 to 5 years (2,287 funds), 5 to 10 years 

(1,787 funds), 10 to 15 years (1,201 funds), and 15 to 28 years (2,414 funds).  Not surprisingly, since 

poorly performing funds are likely to be shut down sooner, funds with shorter lives have worse average 

performance.  For example, only 22.6% of funds with lives less than five years have lifetime buy-and-

hold returns that outperform SPY, and only a slight majority (53.6%) of these funds outperform one-

month Treasury bills.  In contrast, almost all (96.8%) of funds with lives that exceed fifteen years 

outperform Treasury bills.  The most informative fact observable in Panel D of Table 2 is that, even in the 
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longest lived and best performing group (those that are in the database for 15 to 28 years), less than half 

(40.8%) of funds outperform the SPY, and only 31.5% outperform the value-weighted market.15 

Fama and French (2010) document that equity mutual funds as a class underperform market 

benchmarks.  The results here show that the rate of underperformance increases at longer return horizons, 

a result that can be attributed at least in part to the fact that the compounding of returns over time leads to 

positive skewness in the distribution of long-horizon returns.   However, the rate of underperformance is 

lower for funds with longer lives, which can be attributed to the fact that the poorest performing funds 

tend to be shut down before their lives become long.  

In Panel E of Table 2 we report on lifetime returns for index vs. non-index mutual funds.  The 

mean index fund lifetime return of 186.9% is slightly lower than the mean non-index fund return, which 

is 191.5%, but index funds have a slightly longer average life as well.  While the 33.2% of index funds 

with cumulative returns that exceed the SPY is greater than the 29.2% of non-index funds that do so, each 

percentage is significantly less than 0.5.   

The key conclusion that can be drawn from the results reported in Tables 1 and 2 is that the 

likelihood that a given mutual fund outperforms market aggregates in terms of compound return decreases 

                                                 
15 As noted, our analysis focuses on domestic equity funds.  To assess robustness, we also report in the Internet 
Appendix some results for international equity funds (CRSP fund style code starting with “EF”), contained in the 
CRSP database.  As benchmarks, we consider returns to the SPY ETF and to tradeable Vanguard Funds (from 1991 
to 1995 we rely on Vanguard’s European index fund, VEURX and thereafter we rely on their Total International 
Index Fund, VGTSX).   On average, international equity funds underperform the SPY, but outperform VGTSX.  At 
the annual horizon (Panel B of Table A2 in the Internet appendix), the mean fund return is 6.47%, as compared to a 
mean VGTSX return of 5.82% and a mean SPY return of 9.13%.  At the decade horizon (Panel C of Table A2) the 
mean fund return is 43.16%, compared to a mean VGTSX return of 35.30% and a mean SPY return of 91.76%.  At 
the lifetime horizon (Panel D of Table A2) the mean fund return is 91.56% compared to a mean VGTSX return of 
68.73% and a mean SPY return of 186.71%.  These results reflect that the SPY comprised a notably higher hurdle 
during the 1991 to 2018 sample period, with a mean monthly return (Panel A of Table A2 in the Internet appendix) 
of 0.76%, compared to 0.47% for VGTSX, and that international equity funds most often also hold some US stocks.   
Notably, however, only a minority of international equity funds outperformed either benchmark, even while the 
cross-fund mean outperforms VGTSX.   Rates of outperformance relative to SPY are 39.2%, 26.8%, and 13.9% at 
the annual, decade, and lifetime horizons, respectively, while rates of outperformance relative to VGTSX are 48.4%, 
47.9%, and 47.5% at the annual, decade, and lifetime horizons, respectively.  These low rates of outperformance 
reflect that buy-and-hold returns to international equity funds are also positively skewed; standardized skewness 
coefficients are 0.936 at the annual horizon, 2.315 at the decade horizon, and 7.133 at the lifetime horizon.       
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monotonically as the time horizon over which returns are measured increases from monthly to annual to 

decade to lifetime.  Importantly, this finding holds within a given sample.    

While the comparison of compound fund returns to compound market proxy returns is simple and 

informative, it does not allow for fund exposure to systematic risk.  In particular, a fund that earned 

returns identical to the overall market on the portion of its portfolio invested in risky assets but that also 

kept some funds in cash would have a market beta less than one and would underperform the market 

during any time period where the market return exceeded the cash return.  We therefore next assess 

mutual fund performance when returns are measured over alternative horizons, while allowing for betas 

to differ from one.    

 

4. Long vs. Short-horizon Alpha 

 Jensen (1968) introduced “alpha” as a measure of mutual fund performance that allows for 

systematic (i.e. beta) risk, motivating it as a “direct application” of the asset pricing model now broadly 

referred to as the CAPM.  The CAPM is a single-period model, but the length of the period is unspecified.  

In practice, investment and decision horizons can differ across investors, a fact not explicitly considered 

by the CAPM.  Nevertheless, investors are interested in assessing fund performance after allowing for 

risk, and researchers are interested in testing asset pricing models.  Alpha estimates are central to each 

exercise.   Of course, researchers have adapted the concept of alpha to multi-factor models.   Our intent 

here is to focus attention on the fact that alphas depend on return horizon in the simplest possible setting, 

where alphas are measured with respect to the market factor. Despite the single factor model’s simplicity, 

there is evidence it is of substantial relevance to investors.  In particular, both Berk and van Binsbergen 

(2016) and Barber, Huang, and Odean (2016) present evidence that the single factor model better explains 

investor flows into and out of mutual funds as compared to more complex models.     

 To assess how mutual fund alphas depend on the horizon over which returns are measured, we 

must accommodate the fact, previously noted by Levhari and Levy (1977), Handa, Kothari and Wasley 
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(1989), Longstaff (1989) and Levy and Levy (2011) among others, that betas depend on the time horizon 

over which returns are measured.  That is, betas defined based on monthly returns differ from betas 

defined based on annual returns which differ from betas defined based on decade returns, etc.   

 We highlight that alphas also depend on the horizon over which returns are measured, and in 

complex ways.  It is an important point of perspective that alphas and betas as parameters vary as a 

function of return horizon, even in the absence of estimation issues.  With the exception of Levy and Levy 

(2011), this fact does not appear to have been emphasized in the literature.16   

We first demonstrate the theoretical relation between short-return-horizon and long-return-

horizon alphas, assuming for simplicity that returns are independently and identically distributed over 

time.   We then describe the empirical methods we use to estimate long-return-horizon alphas and betas 

for the funds in the sample.  Finally, we describe the resulting empirical evidence regarding long-return-

horizon alphas for US equity mutual funds.   

4.1 Return Horizon, Beta, and Alpha 

 In this section we demonstrate relations between short-horizon and long-horizon alphas and betas, 

in the simplest possible setting, where returns are iid over time.  This discussion focuses on parameters; 

estimation issues are considered in section 4.2.    

Consider an individual fund or asset i and the overall market m, and let 𝜇௜ and 𝜇௠ denote their 

respective short-horizon (e.g. monthly) mean returns.  Let 𝜎௠ଶ  denote the variance of short-horizon market 

returns, 𝜎௜௠ the covariance between short-horizon asset i and market returns and 𝛽௜ ൌ
ఙ೔೘
ఙ೘
మ  denote asset i’s 

short-horizon market beta.   Assume for expositional simplicity that the risk-free interest rate is zero.  The 

short-horizon alpha is defined as: 

𝛼௜ ൌ 𝜇௜ െ 𝛽௜𝜇௠.                                                                                                                                          (1) 

                                                 
16 Levy and Levy (2011) note that if the CAPM holds (i.e. implies zero alphas) for a horizon longer than that used to 
measure returns, then positive alphas are mechanically induced for small firms, due to their high betas.  They do not, 
however, develop an expression for true alpha as a function of return horizon.   
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 Let a superscript L denote long-horizon (e.g. decade) returns, which are short-horizon returns 

compounded over N periods.  Let 𝜎௠ଶ௅  denote the variance of long-return-horizon market returns, 𝜎௜௠
௅  the 

covariance of between long-horizon asset i and long-horizon market returns, and let 𝛽௜
௅ ൌ

ఙ೔೘
ಽ

ఙ೘
మಽ  denote 

asset i’s long-return-horizon market beta.  The alpha for long-horizon returns is:  

𝛼௜
௅ ൌ 𝜇௜

௅ െ 𝛽௜
௅𝜇௠௅ .                                                                                                                                        (2) 

 Expressions (1) and (2) are conceptually identical definitions of alpha, differing only in the 

horizon over which returns are measured.  Any long-horizon return can also be stated by compounding 

shorter horizon returns.  If returns are iid, then 𝜇௜
௅ ൌ ሺ1 ൅ 𝜇௜ሻே െ 1 and 𝜇௠௅ ൌ ሺ1 ൅ 𝜇௠ሻே െ 1.  

Substituting into (2), the long-return-horizon alpha can be stated as a function of short-return-horizon 

alpha and long and short-horizon betas as:                                                                                               

 𝛼௜
௅ ൌ ሺ1 ൅  𝛼௜ ൅ 𝛽௜𝜇௠ሻே െ 𝛽௜

௅ሼሺ1 ൅ 𝜇௠ሻே െ 1ሽ െ 1.                                                                               (3)                           

 Note that in the special case where 𝜇௠ ൌ 0 the expression for the long-return-horizon alpha 

simplifies to 𝛼௜
௅ ൌ ሺ1 ൅  𝛼௜ሻே െ 1, implying that the long-return-horizon alpha is the compounded 

equivalent of the short-return-horizon alpha.  This simplification reflects that both short and long-return-

horizon betas are eliminated from the expression in this special case.  More generally, the relation 

between short and long-horizon alphas depends on both short and long-horizon betas as well as the mean 

short-horizon market return, 𝜇௠.  Levhari and Levy (1977) show that when returns are independently and 

identically distributed:                                                                                                                                          

𝜎௠ଶ௅= ሺ𝜎௠ଶ ൅ ሺ1 ൅ 𝜇௠ሻଶሻே െ ሺ1 ൅ 𝜇௠ሻଶே  and                                                                                           (4) 

𝜎௜௠
௅ = ሺ𝜎௜௠ ൅ ሺ1 ൅ 𝑢௜ሻሺ1 ൅ 𝑢௠ሻሻே െ ሺ1 ൅ 𝜇௜ሻேሺ1 ൅ 𝜇௠ሻே.                                                                      (5) 

 The long-horizon variance of a given asset’s return (the market in this case) and the long-horizon 

covariance between a pair of asset returns not only depends on the length of the return horizon, N, but in a 

non-linear manner.  Further, the long-return-horizon variance depends on the own asset mean return, 

while the covariance depends on the mean return on each of the two assets.  The covariance of asset i 

returns with the market (or, more generally the covariance between any pair of asset returns) typically 
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grows with N at a different rate than the market variance (or more generally, the variance of a given asset 

return).  Combining (4) and (5), the long-horizon beta per Levhari and Levy (1977) is:  

𝛽௜
௅ ൌ

൫ఉ೔ఙ೘మ  ାሺଵା௨೔ሻሺଵା௨೘ሻ൯
ಿ
ିሺଵାఓ೔ሻಿሺଵାఓ೘ሻಿ

൫ఙ೘
మ ାሺଵାఓ೘ሻమ൯

ಿ
ିሺଵାఓ೘ሻమಿ

 ,                                                                                            (6) 

which depends not only on the short-return-horizon beta, 𝛽௜, and on the number of periods over which 

returns are compounded, N, but also the mean short-horizon market return, 𝑢௠, the mean short-horizon 

security return, 𝑢௜, and the variance of short-horizon market returns, 𝜎௠ଶ .17  It can be verified that (6) 

implies that long and short-return-horizon betas are equal only if 𝛼௜= 0 and 𝛽௜ ൌ 1.  

 To illustrate the implications of expression (6), Panel A of Figure 3 displays long-horizon (10-

year) asset i betas that are implied by various combinations of short-horizon (monthly) betas and short-

horizon alphas.18  Three points are noteworthy.  First, the long-horizon beta is equal to the short-horizon 

beta only if the short-horizon beta is one and the short-horizon alpha is zero.  Second, long-horizon betas 

are increasing in short-horizon alphas.  Third, while long-horizon betas increase monotonically with 

short-horizon betas, the relation is non-linear, and the effect of longer horizons is greater for short-horizon 

betas that are greater than one as compared to short-horizon betas that are less than one.  This last 

observation is the basis for testable asymmetries in the relation between short and long-return-horizon 

alphas, as discussed below.   

 Combining expressions (3) and (6), long horizon alpha depends on short horizon alpha and other 

parameters according to:  

 𝛼௜
௅ ൌ ሺ1 ൅  𝛼௜ ൅ 𝛽௜𝜇௠ሻே െ 1 െ

ቀఉ೔ఙ೘మ  ାሺଵା௨೔ሻሺଵା௨೘ሻቁ
ಿ
ିሺଵାఓ೔ሻಿሺଵାఓ೘ሻಿ

൫ఙ೘
మ ାሺଵାఓ೘ሻమ൯

ಿ
ିሺଵାఓ೘ሻమಿ

ሼሺ1 ൅ 𝜇௠ሻே െ 1ሽ.                   (7)                              

 

                                                 
17 A limitation of the Levhari and Levy (1977) analysis is that they take the asset return and the market return to 
simply be correlated variables, without explicitly considering that the asset is itself a component of the market.   We 
develop an extension of the Levhari and Levy that explicitly incorporates the fact that the asset is a component of 
the market, and obtain results that are qualitatively identical to those obtained by applying their analysis, as long as 
the weighting on the asset in question remains small.     
18 The illustration relies also on 𝜇௠ ൌ .0075 𝑎𝑛𝑑 𝜎௠ ൌ  .055, which are reasonable in view of estimates obtained 
from actual data.  
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 Panel B of Figure 3 displays long-return-horizon alphas implied by expression (7) for various 

combinations of short-return-horizon alphas and short-return-horizon betas.  To make short and long-

return-horizon alpha estimates comparable, the long-return-horizon alphas displayed on the Figure are 

annualized by taking the tenth root of one plus the decade-horizon alphas, and subtracting one, while 

monthly return alphas are annualized by taking one plus the monthly return alpha to the twelfth power 

and subtracting one.   

The most notable result that can be observed on Panel B of Figure 3 is that zero short-return-

horizon alpha does not imply zero long-return-horizon alpha, except in the special case where short-

return-horizon beta is one.  Cremers, Fulkerson, and Riley (2019) write that “almost all academic papers 

measure the skill of an active manager as the net alpha of the fund.”19  The fact that alpha can change sign 

across return measurement horizons, even in the absence of estimation issues, calls into question the 

economic interpretation of alpha as a measure of managerial skill.    

 More broadly, Panel B of Figure 3 shows that long and short-return-horizon alphas are 

approximately equal (when each is converted to a common time period such as annual) only if the short-

return-horizon beta is one.  For assets with short-return-horizon betas less than one the long-return-

horizon alpha is greater than the short-return-horizon alpha, while for assets with short-return-horizon 

betas greater than one the long-horizon alpha is less than the short-horizon alpha.   That is, alpha, the 

measure of risk- adjusted returns introduced by Jensen (1968), depends on the horizon over which returns 

are measured.  Investors who are concerned with outcomes measured over short horizons will experience 

different alphas than investors who are concerned with outcomes over long horizons, even if returns are 

iid and in the absence of estimation issues.    

 This analysis has an important testable implication.  Specifically, estimated long-return-horizon 

alphas are more likely to be negative if short-return-horizon betas are greater than one, while estimated 

                                                 
19 Berk and van Binsbergen (2015) argue that skill should be measured based on the combination of gross alpha 
estimates and assets under management.  However, the fact that alpha depends on return horizon is relevant to these 
authors’ interpretations as well.   
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long-return-horizon alphas are less likely to be negative if short-return-horizon betas are less than one, 

other things equal.  Further, the functions displayed on Figure 3 are not linear.  That is, the effect of return 

horizon on alpha is asymmetric, and is of greater consequence for funds or assets with larger short-return-

horizon betas.  

The observation that single-factor alphas depend on return horizon in complex ways is a 

manifestation of the broader fact (e.g., Chernov, Lochstoer, and Lundeby, 2020) that a linear factor model 

that is valid (i.e. generates zero alphas) at a single-period horizon does not generally extend (as a linear 

model in compound factor outcomes) to multiperiod horizons.  However, the theory underlying factor 

models does not generally specify the horizon at which the model should hold, and we know of no theory 

with the implication that the CAPM or other models should hold at the monthly horizon in particular.  

Our focus in this paper is not on testing the implications of factor models per se, but on assessing the 

information content of performance measures that are implemented in returns measured over alternative 

horizons.  We argue that the results here imply that the performance of mutual funds cannot be evaluated 

independent of the question of which return horizon is most relevant to investors.        

4.2 Estimating Long-horizon Alphas and Betas  

 Short-horizon (e.g. monthly) betas are typically estimated by time series regressions, where the 

sample size is the number of months for which the requisite data is available.   Here, we seek to estimate 

betas for longer return horizons.  On average, funds are included in our sample for only slightly more than 

one decade, so time series regression methods cannot be implemented based on non-overlapping decade 

or lifetime returns.  We instead proceed as follows. 

 First, we estimate single factor alphas and betas using standard time series regressions of monthly 

excess returns for each fund on monthly excess SPY returns over the matched sample periods.  We also 

record fund-specific estimates of the mean excess fund monthly return, the mean and variance of the 

excess market monthly return, and the fund’s residual monthly return variance.  In light of the fact that 

some of these estimates are obtained from short samples we winsorize these estimates at the 10th and 90th 

percentiles.  We then employ the fund-specific estimates of the mean excess fund return, the mean excess 
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market return, fund monthly return beta, and variance of market excess returns in expression (6) to obtain 

corresponding estimates of long-horizon betas at the annual, decade, and lifetime horizons.  Denote these 

long-horizon estimates as 𝛽መ௜
௅ .  However, since expression (6) is non-linear in its parameters, the resulting 

𝛽መ௜
௅  estimates are not only noisy, but are likely biased.  We rely on Bayesian reasoning and simulations to 

assess relations between true long-horizon betas and long-horizon betas estimated by this procedure in 

order to adjust these noisy estimates, as described below.  

 For each of the 7,689 funds in our sample we create a matched simulated fund and assign to it a 

true monthly beta, 𝛽௜, as a random draw from a normal distribution with mean equal to the sample fund’s 

empirically estimated monthly beta and variance equal to the cross-sectional sample variance of monthly 

fund beta estimates.  We assign a true monthly alpha, 𝛼௜, to each simulated fund as a random draw from a 

normal distribution with mean equal to the matched sample fund’s alpha estimate and variance equal to 

the cross-sectional variance of sample monthly alphas across all funds, and we assign 𝜇௠ and 𝜎௠ଶ  

parameters to the simulated fund that are equal to matched sample outcomes for the same months.  

Having done so, we use expressions (1) and (6) and the generated parameters to compute a true long-

horizon beta for each simulated fund, denoted 𝛽௜
௅ .    

We then create simulated sample returns.  If the sample for the actual fund includes N monthly 

returns, we generate for the matched simulated fund N monthly excess market returns, 𝑅௠௧ as random 

draws from a normal distribution with mean and variance equal to the matching fund sample estimates of 

such and create N monthly excess simulated fund returns as 𝑅௜௧ ൌ 𝛼௜ ൅ 𝛽௜ ∗ 𝑅௠௧ ൅ 𝑒௜௧, where each 𝑒௜௧ is 

a random draw from a zero-mean normal distribution with variance equal the sample residual volatility 

for the sample fund.   Having generated a N-month return sample for each simulated fund, we obtain an 

estimated monthly beta for each simulated fund by standard regression methods, and convert that monthly 

estimate to a corresponding long-horizon estimate (denoted as 𝛽መ௜
௅ௌ, where the S in the superscript denotes 

that the estimate is simulation based) using expression (6) and other estimated parameters estimates from 

the simulated sample.    
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We repeat the procedure described in the prior paragraph 1,000 times, to obtain for each 

simulated fund a distribution of 1,000 true long-horizon betas as well as 1,000 estimates of long-horizon 

betas that are obtained by employing short-horizon parameter estimates in expression (6).  We then 

estimate relations between true long-horizon betas and long-horizon beta estimates obtained when using 

monthly return sample estimates in expression (6).  In particular, we estimate fund-specific regressions of 

the form 𝛽௜
௅ ൌ 𝑎 ൅ 𝑏 ∗ 𝛽መ௜

௅ௌ ൅ 𝑢 across the 1,000 simulated outcomes.   

Table 3 provides summary statistics regarding the resulting distribution of regression coefficient 

estimates across the simulated funds, when the simulations are applied based on annual, decade, and 

lifetime return horizons.  If the use of monthly parameter estimates in expression (6) yields unbiased 

estimates of long-horizon betas then intercepts in these regressions should not differ significantly from 

zero and slope coefficients should not differ significantly from one.   In actuality, intercepts are positive 

for virtually all simulated funds (the fifth percentile is positive at all three horizons), and average 0.25 in 

annual returns, 0.18 in decade horizon returns, and 0.22 in lifetime returns.  Slope coefficients are 

virtually all less than one (the ninety fifth percentile is less than one at all three horizons) and average 

0.73 in annual returns and 0.79 in both decade and lifetime returns.    

While these results imply that employing monthly parameter estimates in expression (6) leads to 

biased estimates of long-horizon betas, they also suggest a solution, which we implement.  Long-horizon 

beta estimates can be obtained as fitted values from the simulated fund regressions.   In particular, we 

estimate the long-horizon beta for each actual fund as the intercept obtained in the regression across the 

1,000 simulation outcomes for the matched fund plus the slope coefficient from the same regression 

times 𝛽መ௜
௅ , the estimate of the long horizon beta obtained by inserting parameter estimates from the actual 

fund i sample in expression (6).  Note that this estimate can be viewed as a weighted average of the 

estimate obtained when employing monthly parameter estimates in expression (6) and 1.0, which is the 

mean (across all securities comprising the market) true beta at any return horizon.  As such, the final 

estimate is similar in concept to that obtained by the Bayesian adjustment of short-horizon beta estimates 
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proposed by Vasicek (1973).  However, since the method relies on expression (6), which is attributable 

Levhari and Levy (1977), we refer to this procedure as the modified LL method.   

The modified LL procedure adjusts for biases that are revealed by the simulated data.   However, 

the simulation as well as expression (6) itself rely on simplifying assumptions, including that returns are 

independently distributed over time, that are unlikely to be precisely accurate in the actual data.  We 

therefore provide additional evidence regarding the validity of the procedure.  As noted, it is not feasible 

to estimate long-horizon betas for decade or full-sample return horizons using standard time series 

regression methods, due to insufficient return observations.   However, it is viable to obtain estimates of 

annual return horizon betas using standard time series methods.  While the time series estimates of beta 

obtained from annual returns may be quite noisy due to small sample sizes, they are unbiased under 

standard assumptions.    

In Table 4 we report data regarding beta estimates obtained for annual returns using standard time 

series regressions and those obtained based on the procedure described above.  Results pertain to all funds 

with at least ten annual returns, i.e. where the time series regression includes at least ten observations.   

The results on Table 4 show that the distribution of beta estimates is quite similar across the two methods.  

Across all 4,080 funds with at least ten annual return observations, the mean annual beta estimated by 

either time series regressions or the modified LL method is 0.912.  Mean beta estimates remain similar 

when the sample is broken into funds with an estimated monthly beta greater versus less than one.  In 

general, it can be observed that annual beta estimates obtained by the modified LL method are less 

volatile and less skewed as compared to annual beta estimates obtained by time series regressions.    On 

balance we view the data reported in Table 4 as supporting the conclusion that the modified LL method 

provides reasonable beta estimates. 

To obtain long-horizon alpha estimates, we employ sample estimates in expression (2).  We rely 

on the modified LL method described above to obtain market beta estimates at the annual, decade, and 

lifetime horizons.  We rely on time series means of returns measured over the indicated horizon for each 

fund (in excess of the compound return on one-month Treasury bills over the matched horizon) as the 
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estimate of the long-horizon expected fund excess return 𝜇௜
௅, and the time series mean compound return to 

the SPY over the matched horizon (also in excess of the compound one-month Treasury bill return) as the 

estimate of the long-horizon expected market (excess) return 𝜇௠௅ .   For the lifetime results the time series 

mean is simply the single sample observation for each fund.    

4.3 Empirical Estimates of Long-horizon Beta  

In Table 5 we report on estimates of short-return-horizon (monthly) betas obtained by standard 

time series regressions and long-return-horizon (annual, decade, and lifetime) betas obtained by the 

modified LL approach.  Results reported are based on the SPY return as the market proxy; results 

obtained when using the CRSP value-weighed return instead are similar (see Tables A3 and A4 in the 

Internet Appendix).   

The mean beta estimated against SPY in monthly returns across the 7,689 sample funds is 0.940, 

while the mean betas measured from annual, decade, and lifetime returns by the modified LL method are 

0.912, 0.850, and 0.917, respectively.  As might be expected, betas estimated from long-horizon returns 

are more volatile, as the standard deviation of the estimates increases from 0.328 for monthly returns to 

0.504 for lifetime returns.  The distribution of betas estimated from long-horizon returns is also more 

highly skewed as compared to estimates from monthly returns; the skewness coefficient for lifetime 

return beta estimates is 1.83, compared to 0.98 for monthly returns.  

The mean beta estimated from monthly returns for the 3,153 funds with monthly beta estimates 

greater than one is 1.201.  For these funds, estimated betas at the one-year, decade, and lifetime horizons 

are 1.142, 1.108, and 1.234, respectively.  Thus, the average beta for these funds does not increase 

notably with return horizon.  As discussed below, we estimate negative average alphas for these funds, 

which as shown on Figure 3, reduce longer horizon beta estimates.  For the 4,536 funds where the beta 

estimated from monthly returns is less than one, the mean monthly return beta is 0.759.   For these funds, 

mean beta estimates are 0.752, 0.671, and 0.696 at the annual, decade, and lifetime horizons.   Thus, the 

estimates display a tendency for beta estimates that are less than one at the monthly return horizon to 

decrease as returns are measured over longer horizons. 
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4.4 Empirical Estimates of Long-Return Horizon Alpha  

Perhaps the most striking implication of the analysis presented in Section 4 is that a fund that has 

a positive alpha when returns are measured at a monthly horizon can have a negative alpha when returns 

are measured at a longer horizon, and vice versa.  This result is not simply a matter of sampling error; that 

is, the sign of the true alpha can differ depending on return horizon.  Of course, empirical estimates of 

long-horizon alphas will be affected by random sampling noise as well as changes in true alphas as a 

function of horizon.  To distinguish between the effects of noise and changes in true alpha as a function of 

return horizon we focus on the asymmetry implication noted in section 4.1 above.  In particular, the 

theory developed there implies (i) alpha estimates will tend to be smaller at longer return measurement 

horizons for funds with short-horizon beta estimates that are greater than one, and vice versa, and (ii) the 

effect of return measurement horizon on alpha estimates will be stronger for funds with estimated short-

horizon betas that are greater than one.    

We next report on the extent to which the sign of alpha estimates in our sample depend on the 

horizon over which returns are measured.   In interpreting these results, it is important to recall that each 

alpha estimate is obtained from the identical sample; annual, decade, and lifetime returns are all obtained 

by compounding the same monthly sample returns.   

Table 6 reports on the in-sample probabilities that alphas estimated from long-horizon (annual, 

decade, and lifetime) returns have the same sign as alphas estimated for the same fund based on monthly 

returns.  We report overall results, as well as results delineated by the sign of short-horizon alpha 

estimates.  The results in Panel A, which pertain to all funds in the sample, show that the likelihood that 

long-horizon alpha estimates are of the same sign as alphas estimated from monthly returns decreases 

with the return measurement horizon, from 93.6% at the annual horizon to 87.6% at the decade horizon 

and 85.5% at the lifetime horizon.  The rates of agreement are relatively high, 99.2%, 91.7%, and 92.0% 

at the annual, decade, and lifetime horizons when the alphas estimated from monthly returns are negative.  
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In contrast, rates of agreement are notable lower, 85.6%, 81.7%, and 76.1% at the annual, decade, and 

lifetime horizons, respectively, when alphas estimated from monthly returns are positive.   The finding 

that nearly one fourth of funds with positive alphas estimated from monthly returns have negative alpha 

estimates when focusing on long-horizon returns is striking.    

On Panel B of Table 6 we report results on the frequency that the sign of short and long-return-

horizon alpha estimates agree, based on subsamples that are defined by the length of time that a fund is 

included in the database.  Results for funds with longer lives are of particular interest for two reasons.  

First, lifetime betas for funds with relatively long lives are estimated over a longer horizon and, based on 

expression (7), should differ more from short-return-horizon betas, leading to larger potential divergences 

in alpha estimates as a function of return horizon.  Second, funds with longer lives also have larger 

sample sizes, so both short and long-horizon betas and alphas should both be estimated more accurately.20      

The results reported on Panel B of Table 6 show that the effect of return horizon is indeed 

strongest for funds that are in the database for longer time periods.  The sample probability that the sign 

of the alpha estimate is consistent across monthly and lifetime return horizons is 95.1% for funds with a 

life of 1 to 5 years, 89.4% for funds with a life of 5 to 10 years, 86.8% for funds with a life of 10 to 15 

years, and 72.8% for funds that are in the database for over 15 years.  Focusing on the subsample of funds 

where the alpha estimated from monthly returns is positive, the probability that alpha estimate implied by 

lifetime returns is also positive is 86.7%, 80.9%, 82.2%, and 67.7% for funds with sample lives of 1-5 

years, 5-10 years, 10-15 years, and over 15 years, respectively.  To restate the final result, among those 

funds that are in the database for more than fifteen years and for which alpha estimates obtained in 

monthly returns are positive, more than 30% have negative alpha estimates when returns are measured 

over the life of the fund.   

                                                 
20 Funds with long lives also have better overall performance, as documented on Panel D of Table 2.  However, 
while survivorship bias may increase performance measured at any given horizon, this should not explain 
differentials in alpha estimates across short and long horizon return intervals.  
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In Table 7 we report on the distribution of alpha estimates, including means, medians, and 

standard deviations.  Panel A contains results pertaining to all sample funds.  Each alpha estimate, 

regardless of return horizon, is restated as a monthly equivalent to make estimates directly comparable.21  

While the hypothesis that mean alphas are equal across return measurement horizons can be rejected (p-

value < .01), mean alphas for the full sample do not differ dramatically across return measurement 

horizons.  The cross-fund mean alpha estimate is -0.11% in monthly returns, -0.16% in annual returns,     

-0.06% in decade returns, and -0.19% in full-sample horizon returns.   Corresponding median alpha 

estimates are -0.05% in monthly returns, -0.08% in both annual and decade returns, and -0.12% in 

lifetime returns.    

In Panels B and C of Table 7 we report corresponding results for subsamples where the beta 

estimated from monthly returns is greater (Panel B) or less (Panel C) than one.  As noted in Section 4.1, 

our analysis implies asymmetries in the effect of return horizon on alpha estimates as a function of short-

horizon beta estimates, while random sampling error does not imply such asymmetry.  In particular, Panel 

A of Figure 3 shows that long-return-horizon betas not only increase with short-return-horizon betas, but 

that the relation is stronger for high beta funds.  As a consequence, alphas for funds with small short-

return-horizon betas tend to increase with return horizon, while alphas for funds with large short-return-

horizon betas tend to decline, and more so the higher the beta.    

The empirical results on Table 7 are consistent with this implication.   For the 3,153 funds with 

short-horizon beta estimates that are greater than one (Panel B), mean alpha estimates decrease notably 

with return measurement horizon, from -0.16% for monthly returns, to -0.27% for annual returns, -0.22% 

for decade returns, and -0.46% for full-sample horizon returns.  In contrast, for the 4,536 funds with 

monthly beta estimates that are less than one, alpha estimates increase modestly with return horizon, from 

                                                 
21 We restate long horizon alphas as monthly equivalents by dividing by the number of months in the sample.   The 
more natural alternative, to focus on the Nth root (where N is the number of months in the sample) of one plus the 
long horizon alpha, is precluded for more than 650 funds because the estimated long horizon alpha is less than  
-100%.    
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-0.07% in monthly returns to -0.09% in annual returns, 0.05% in decade horizon returns, and 0.00% in 

full-sample horizon returns (which does not differ significantly from zero).    

We also report in Table 7 the fraction of funds with positive alpha estimates when returns are 

measured at various horizons.  For the full sample of 7,689 funds, the proportion with positive alpha 

estimates decreases moderately from 40.9% when returns are measured at the monthly horizon to 35.8% 

when returns are measured at the lifetime horizon.  Among those funds with a negative alpha estimate 

based on monthly returns, only 8.0% have a positive alpha estimate based on lifetime returns.   In 

contrast, among those funds with a positive alpha estimate based on monthly returns, 23.9% have a 

negative alpha estimate based on lifetime returns.     

The divergence is more notable when focusing on funds with monthly beta estimates greater than 

one (Panel B of Table 7).  Among the funds with a monthly return beta estimate greater than one and a 

monthly return alpha estimate that is negative, less than 0.01% have a positive alpha estimate based on 

lifetime returns.  In contrast, among the funds with a monthly return beta estimate greater than one and a 

monthly return alpha estimate that is positive, more than half (54.6%) have a negative alpha estimate 

based on lifetime returns.  This striking outcome can also be contrasted to results for funds that have a 

monthly return beta estimate less than one and a monthly return alpha estimate that is positive, where only 

6.7% have a negative alpha estimate based on lifetime returns.  These results are consistent with the 

empirical prediction made in Section 4.1 that the effect of return horizon on alpha estimates is 

asymmetric, being stronger for funds with larger short-horizon beta estimates.     

Finally, we report in Panel D of Table 7 information regarding the magnitudes of divergences 

between short-horizon and long-horizon alpha estimates for sample funds.  These divergences increase 

with return horizon.  Considering the full sample of 7,689 funds, the difference in alpha estimates as 

compared to those obtained in monthly returns exceeds five percent per year for 2.6% of funds when 

returns are measured at the annual horizon, 8.2% of funds when returns are measured at the decade 

horizon, and 12.0% of funds when returns are measured at the lifetime horizon.    
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The asymmetry predicted by our analysis in Section 4.1 is observable on Panel D as well.   

Focusing the subsample of funds with monthly return beta estimates that exceed (are less than) one, the 

difference in alpha estimates as compared to those obtained in monthly returns exceeds five percent per 

year for 5.0% (1.0%) of funds when returns are measured at the annual horizon, 12.3% (5.4%) of funds 

when returns are measured at the decade horizon, and 20.6% (5.9%) of funds when returns are measured 

at the lifetime horizon  

To summarize, estimates of alpha depend on the horizon over which returns are measured, even 

when focusing on a single sample.  This result arises because means, variances, and covariances of 

returns all depend on the horizon over which returns are measured, but do not generally increase with 

horizon in a linear manner or proportional to each other.  A key testable implication of our analysis is that 

the effect of return horizon is asymmetric, being greater for funds with high betas measured in short-

horizon returns.  The results reported here verify this prediction, and show that differences in alphas 

estimated from monthly returns and those estimated from the same data but focusing on longer horizon 

returns are economically substantive.    

 

5. Conclusions 

 The literature that studies funds’ return performance (including mutual funds, hedge funds, 

pension funds, etc.) is vast, but most of the evidence is based on returns measured over short, most often 

monthly, horizons.  Investment horizons differ across investors, and can stretch to decades.  While it is 

true that many investors periodically rebalance their portfolios, the parameters of return distributions 

(means, medians, standard deviations, covariances, skewness, etc.) vary with return horizon in complex 

and non-linear ways, with or without periodic portfolio rebalancing.  We know of no compelling reason to 

believe that parameters estimated from monthly returns are necessarily the most relevant to investors with 

disparate investment horizons. 

  In this paper, we focus attention on the effects of measuring returns over various horizons such as  

monthly vs. annual vs. decadal.  Importantly, our emphasis is not on forecasting, learning, or time-varying 
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parameters, but rather on the effects measuring returns from a given sample over varying horizons.  We 

study U.S. equity mutual funds for the 1991 to 2018 period.  We first show that return horizon is relevant 

in simple comparisons of fund returns to market benchmark returns.  In the monthly data, equity mutual 

fund returns exceed the matched-month return to the SPY ETF (taken as a proxy for the overall market 

that investors could readily have captured) for 46.9% of observations.  In contrast, the percentage of 

sample funds that generate compound returns that exceed those to the SPY is only 29.5% at the (fund-

specific) lifetime horizon.    

 Of course, investors are generally concerned with the systematic risk they are exposed to, and 

want to know whether the expected return on their position compensates for that risk.  In short, they are 

concerned with alphas and betas.  While the literature has taken note of the fact that market betas are not 

invariant to return horizon, we focus additional attention on how alphas depend on the horizon over which 

returns are measured.  We show theoretically and empirically that the sign of the short-horizon (e.g. 

monthly) alpha does not necessarily reveal the sign of the longer horizon alpha, and that the relation 

depends on the magnitude of short-horizon betas.   Our analysis also predicts an important asymmetry in 

the effect of return horizon on alpha.  In particular, alphas will tend to increase for funds with smaller 

short-return-horizon betas and will tend to decrease for funds with larger short-horizon betas as the return 

measurement interval increases, and more so when short-horizon beta estimates are larger.      

 We estimate long-horizon betas using a modification of the formulas introduced by Levhari and 

Levy (1977) that is guided by the outcomes of simulations.  Using these methods, we show that, 

consistent with theory, long-horizon alphas not only differ from short-horizon alphas, but that the 

differences vary systematically based on short-horizon betas.   For the full sample, 40.9% of alphas 

estimated from monthly data are positive, while among funds with a short-horizon beta estimate greater 

than one the percentage of funds with positive long-horizon alphas is decreased dramatically to only 

16.7%.  Even among those funds with a positive alpha estimated from monthly returns, only a minority 

(45.4%) of these funds have positive long-horizon alpha estimates if their short-horizon beta is greater 

than one.    
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 The interpretation of these results is intrinsically related to the evaluation of asset pricing models.   

Jensen (1968) introduced alpha as a measure of mutual fund performance, explicitly referencing existing 

asset pricing models.  He stated in particular (page 390) that “the measure of portfolio performance 

summarized below is derived from a direct application of the theoretical results of the capital asset pricing 

models derived independently by Sharpe, Lintner and Treynor.”  More broadly, a central implication of 

linear factor based asset pricing models is that alphas estimated with respect to the model’s factors should 

not differ significantly from zero.  However, linear factor models generally apply at a single horizon.  The 

Capital Asset Pricing Model (CAPM) of Sharpe (1965) and Lintner (1965) is explicitly a single period 

model, though the length of the period is left unspecified.  Levhari and Levy (1977) demonstrate that tests 

of the CAPM are biased if researchers implement tests using returns measured over the wrong horizon.  

More recently, Chernov, Lochstoer, and Lundeby (2020) observe that a linear factor model that is valid 

(i.e. generates zero alphas) at a single period horizon does not generally extend (as a linear model in 

compound factor outcomes) to multiperiod horizons.  

Our results raise questions regarding the interpretation of alpha estimates over different return 

horizons.   If zero short-horizon alpha need not imply zero long-horizon alpha, and positive (negative) 

short-horizon alpha can be consistent with negative (positive) alpha, even within a single dataset, can 

alpha still be interpreted as being informative regarding managerial skill?   Our results suggest that the 

appropriate interpretation is that the degree to which returns are abnormal cannot be evaluated 

independent of issues related to investors’ horizons; some managers have a relative advantage in 

generating alpha for investors who measure outcomes over long horizons, while others are more likely to 

generate better alphas for investors who measure outcomes over short horizons.  Further, measures of 

mutual fund performance that are based on short-horizon returns may be uninformative or even 

misleading regarding fund performance over the longer horizons that may be relevant to many investors.   
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Figure 1  
Number of funds and aggregate TNA, by year  
This figure plots the annual number of active equity funds (left axis) and the aggregate TNA in $Billion (right axis) 
in each year.    
 

 
 
Figure 2 
Fraction of funds that outperform three benchmarks, by year  
This figure plots the fraction of funds that outperform each of three benchmarks in each year. The benchmarks are 
the CRSP value-weighted market return, the SPDR S&P 500 ETF return (SPY), and the one-month T-Bill rate.  
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Figure 3, Panel A 
Relation between short-horizon beta and long-horizon beta.     
This figure displays long-horizon betas implied by text equations (1) and (6), for a variety of possible short-horizon 
betas and alphas.  The computations incorporate  𝜇௠ ൌ .0075,𝜎௠ ൌ  .055 and N = 120.  
 

 
 
Figure 3, Panel B 
Relation between short-horizon beta and long-horizon alpha   
This figure displays long-horizon alphas implied by text equations (2) and (6) for a variety of possible short-horizon 
betas and alphas.  The computations incorporate  𝜇௠ ൌ .0075,𝜎௠ ൌ  .055 and N = 120.  The long-horizon alpha is 
annualized computing the tenth root of one plus the long-horizon alpha and subtracting one.   
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Table 1: Summary statistics of fund return, expense ratio and TNA    
 
This table reports summary statistics of fund expense ratios and TNA at the fund-month level, as well as monthly 
fund returns and monthly returns to three benchmarks: the CRSP value-weighted market return, the SPDR S&P 500 
ETF return (SPY), and the one-month T-Bill rate. A fund outperforms a benchmark in a month if its monthly return 
is greater than that of the benchmark. Our sample includes active U.S. equity mutual funds from 1991 to 2018.    
 

  # unique # fund-         
Variable funds months Mean Median Std. dev. Skewness 
Fund return (%), monthly 7,689 1019541 0.631 0.661 5.096 -0.355 
Market return (%), monthly 7,689 1019541 0.737 1.280 4.338 -0.713 
SPY return (%), monthly 7,689 1019541 0.699 1.111 4.200 -0.670 
Rf return (%), monthly 7,689 1019541 0.176 0.130 0.173 0.521 
Outperform market 7,689 1019541 0.463 0.000 0.499 0.148 
Outperform SPY 7,689 1019541 0.469 0.000 0.499 0.124 
Outperform T-Bill 7,689 1019541 0.549 1.000 0.498 -0.196 
Expense ratio (%), monthly 7,689 1019541 0.094 0.096 0.050 1.441 
TNA ($B), monthly 7,689 1005705 1.085 0.154 6.766 41.885 

 



 
 

35

Table 2: Fund returns at annual, decade, and lifetime horizons   
 
Panels A-C present summary statistics of buy-and-hold returns to the fund, the CRSP market portfolio, the SPDR 
S&P 500 ETF (SPY), and the one-month T-Bill in each calendar year (Panel A), over each of three ten- or nine-year 
periods (1991-1999, 2000-2008, 2009-2018; Panel B), and over the fund’s whole lifetime (Panel C).  The sample 
includes 7,689 funds, 14,991 fund/decades, and 92,393 fund/years.  A fund outperforms a benchmark if its buy-and-
hold return is greater than that of the benchmark over the same horizon. Panel D presents the mean of the variables 
for the sample funds divided into four groups based on their lifespan. Panel E presents the mean of the variables for 
four types of funds. We carry out t-test of whether the likelihood of a fund outperforming the market/SPY/T-Bill 
equals a half.  ***, **, and * correspond to statistical significance at the 1%, 5% and 10% levels, respectively.   
 
A. Summary statistics of annual fund returns  

Variable # Fund-years Mean Median Std. dev. Skewness 
Fund life (months) 92393 11.0 12.0 2.3 -2.7 
Outperform market 92393 0.385*** 0.000 0.487 0.474 
Outperform SPY 92393 0.399*** 0.000 0.490 0.411 
Outperform T-Bill 92393 0.603*** 1.000 0.489 -0.420 
Fund buy-and-hold return (%) 92393 7.64 6.97 20.32 0.742 
Market buy-and-hold return (%) 92393 8.87 11.71 17.37 -0.712 
SPY buy-and-hold return (%) 92393 8.42 10.74 16.83 -0.797 
Fund buy-and-hold return (%), Pre-fees 92393 8.76 8.07 20.58 0.783 
Outperform market, Pre-fees 92393 0.440*** 0.000 0.496 0.241 
Outperform SPY, Pre-fees 92393 0.469*** 0.000 0.499 0.125 
Outperform T-Bill, Pre-fees 92393 0.636*** 1.000 0.481 -0.567 

 
B. Decade horizon returns 

Variable 
# Fund-
periods Mean Median Std. dev. Skewness 

Fund life (months) 14991 68.0 71.0 40.6 -0.1 
Outperform market 14991 0.349*** 0.000 0.477 0.633 
Outperform SPY 14991 0.392*** 0.000 0.488 0.442 
Outperform T-Bill 14991 0.580*** 1.000 0.494 -0.325 
Fund buy-and-hold return (%) 14991 77.42 24.18 138.17 2.993 
Market buy-and-hold return (%) 14991 93.86 36.30 135.41 1.055 
SPY buy-and-hold return (%) 14991 89.86 32.77 132.42 1.031 
Fund buy-and-hold return (%), Pre-fees 14991 91.22 30.13 154.60 3.197 
Outperform market, Pre-fees 14991 0.440*** 0.000 0.496 0.241 
Outperform SPY, Pre-fees 14991 0.488*** 0.000 0.500 0.047 
Outperform T-Bill, Pre-fees 14991 0.607*** 1.000 0.488 -0.439 
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C: Lifetime fund returns  
Variable N Mean Median Std. dev. Skewness 
Fund life (months) 7689 132.6 111.0 93.2 0.6 
Outperform market 7689 0.238*** 0.000 0.426 1.230 
Outperform SPY 7689 0.295*** 0.000 0.456 0.898 
Outperform T-Bill 7689 0.760*** 1.000 0.427 -1.217 
Fund buy-and-hold return (%) 7689 191.17 74.26 373.71 4.560 
Market buy-and-hold return (%) 7689 224.10 124.01 327.51 2.393 
SPY buy-and-hold return (%) 7689 204.89 120.35 296.45 2.323 
Fund buy-and-hold return (%), Pre-fees 7689 257.25 90.25 515.09 4.776 
Outperform market, Pre-fees 7689 0.386*** 0.000 0.487 0.468 
Outperform SPY, Pre-fees 7689 0.451*** 0.000 0.498 0.197 
Outperform T-Bill, Pre-fees 7689 0.800*** 1.000 0.400 -1.503 

 

D: Lifetime fund returns by fund life  
Fund life [1y, 5y] (5y, 10y] (10y, 15y] (15y, 28y] 
Number of funds 2287 1787 1201 2414 
Fund life (months) 34.8 88.3 148.6 250.1 
Outperform market indicator 0.204*** 0.187*** 0.223*** 0.315*** 
Outperform SPY indicator 0.226*** 0.232*** 0.294*** 0.408*** 
Outperform T-Bill indicator 0.536*** 0.699*** 0.858*** 0.968*** 
Fund buy-and-hold return (%) 6.99 59.98 119.44 498.46 
Market buy-and-hold return (%) 22.95 98.34 162.31 538.50 
SPY buy-and-hold return (%) 22.10 95.24 150.95 486.07 

 
E: Lifetime Returns, Index vs Non-Index Funds 

  Non-index Index S&P index Non-S&P 
Fund type funds funds funds index funds 
Number of funds 7087 602 93 509 
Fund life (months) 131.1 150.2 168.0 146.9 
Outperform market indicator 0.237*** 0.251*** 0.215*** 0.257*** 
Outperform SPY indicator 0.292*** 0.332*** 0.333*** 0.332*** 
Outperform T-Bill indicator 0.752*** 0.854*** 0.817*** 0.861*** 
Fund buy-and-hold return (%) 191.54 186.85 218.69 181.03 
Market buy-and-hold return (%) 225.06 212.84 253.84 205.35 
SPY buy-and-hold return (%) 205.88 193.24 230.55 186.42 
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Table 3: Estimating relations between the true long-horizon beta and the sample long-horizon beta  
 
This table presents summary statistics the regression results of the true long-horizon beta on the long-horizon beta 
computed from an observed sample in bootstrap simulations. In each simulation, we generate a true monthly beta for 
each fund and compute the corresponding true N-month beta (𝛽௜

௅) using Equation (6). We then generate a random 
sample of N-month fund excess returns and SPY/MKT excess returns using the true monthly beta and other 
parameters detailed in Section 4.2. Lastly, we estimate the fund’s monthly beta in this randomly generated sample 
and compute the corresponding N-month beta (𝛽መ௜

௅ௌ) estimate using Equation (6) and other parameters estimated 
from this random sample. We repeat the simulation 1,000 times for each fund and then estimate the following 
regression: 𝛽௜

௅ ൌ 𝑎 ൅ 𝑏 ∗ 𝛽መ௜
௅ௌ ൅ 𝑢. We consider three long-horizon investment horizons for each fund: 12 months, 

and 120 months, and lifetime.  
 

Variable N mean sd p5 p25 p50 p75 p95 

1-year beta 

𝑎ො 7689 0.256 0.194 0.043 0.102 0.195 0.364 0.673 
𝑏෠ 7689 0.732 0.167 0.423 0.618 0.757 0.880 0.945 

R-squared 7689 0.722 0.166 0.419 0.607 0.746 0.871 0.935 

10-year beta 

𝑎ො 7689 0.176 0.180 0.011 0.054 0.109 0.240 0.572 
𝑏෠ 7689 0.794 0.143 0.493 0.720 0.830 0.905 0.964 

R-squared 7689 0.833 0.115 0.598 0.772 0.860 0.926 0.965 

Lifetime beta 

𝑎ො 7689 0.218 0.264 0.015 0.059 0.123 0.284 0.695 
𝑏෠ 7689 0.785 0.149 0.467 0.705 0.820 0.900 0.966 

R-squared 7689 0.830 0.121 0.572 0.770 0.862 0.926 0.963 
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Table 4: Comparing annual betas estimated using the modified LL approach to annual beta estimated based 
on time-series return regressions.     
 
For those mutual funds with available returns in at least 10 calendar years, we estimate the 1-year beta against the 
S&P 500 ETF (SPY) by estimating standard time series regressions and by the modified Levhari and Levy (LL) 
approach described in Section 4.2.   
 

Variable N Mean Median Std. dev. Skewness 

All funds with at least 10 annual return observations 
Monthly beta estimated by time series 
regression 4080 0.921 0.960 0.279 0.371 
Annual beta estimated by modified LL method 4080 0.912 0.956 0.251 -0.314 
Annual beta estimated by time series regression 4080 0.912 0.904 0.310 0.761 

Funds with monthly beta estimate > 1 
Monthly beta estimated by time series 
regression 1641 1.155 1.097 0.204 3.687 
Annual beta estimated by modified LL method 1641 1.135 1.100 0.131 2.261 
Annual beta estimated by time series regression 1641 1.150 1.093 0.274 2.499 

Funds with monthly beta estimate < 1 
Monthly beta estimated by time series 
regression 2439 0.764 0.814 0.203 -1.449 
Annual beta estimated by modified LL method 2439 0.762 0.807 0.194 -0.887 
Annual beta estimated by time series regression 2439 0.753 0.772 0.217 -1.445 
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Table 5: Long-horizon beta versus short-horizon beta  
 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the SPDR S&P 
500 ETF (SPY) and compute its long-horizon beta against SPY over three return horizons (1 year, 10 years, and the 
fund’s lifetime) using the modified Levhari and Levy (LL) approach described in Section 4.2. This table 
compares the monthly versus long-horizon fund betas for all funds, for funds with monthly SPY beta above 1, and 
for funds with monthly SPY beta below 1, respectively. ***, ***, and * indicate that the mean long-horizon (1-year, 
10-year, or lifetime) beta is statistically different than the mean monthly beta at the 1%, 5% and 10% levels, 
respectively.    
 

N Mean Median Std. dev. Skewness   Mean Median Std. dev. Skewness 
All funds 

 Monthly beta  1-year beta 
7689 0.940 0.963 0.328 0.978  0.912*** 0.950 0.264 -0.249 

 10-year beta  Lifetime beta 
7689 0.850*** 0.810 0.473 1.634  0.917*** 0.861 0.504 1.829 

Funds with monthly beta against SPY > 1 

 Monthly beta  1-year beta 
3153 1.201 1.112 0.283 3.267  1.142*** 1.106 0.148 1.846 

 10-year beta  Lifetime beta 
3153 1.108*** 1.033 0.478 1.694  1.234*** 1.078 0.529 2.082 

Funds with monthly beta against SPY < 1 

 Monthly beta  1-year beta 
4536 0.759 0.817 0.216 -1.737  0.752*** 0.800 0.200 -0.940 

10-year beta Lifetime beta 
4536 0.671*** 0.642 0.376 2.087   0.696*** 0.684 0.342 1.578 
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Table 6:   Do short and long-horizon alphas have the same sign?   
 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the SPDR S&P 
500 ETF (SPY) and compute its long-horizon beta against SPY over three investment horizons (1 year, 10 years, 
and the fund’s lifetime) using the modified Levhari and Levy (LL) approach described in Section 4.2. Lastly, we 
compute each fund’s long-horizon alpha using its long-horizon returns and the long-horizon beta. This table presents 
probabilities regarding the sign of the monthly alpha and long-horizon alpha.  
 

Long-horizon alpha 1-year 10-year Lifetime 

Panel A: All funds 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.856 0.817 0.761 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.992 0.917 0.920 
Prob(monthly/long-horizon alphas same sign) 0.936 0.876 0.855 

Panel B: Funds with different life spans 

 Fund life over [1y, 5y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.867 0.858 0.867 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.994 0.935 0.984 
Prob(monthly alpha < 0 | long-horizon alpha < 0) 0.951 0.945 0.951 
Prob(monthly/long-horizon alphas same sign) 0.959 0.914 0.951 

 Fund life over (5y, 10y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.830 0.807 0.809 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.993 0.900 0.930 
Prob(monthly/long-horizon alphas same sign) 0.945 0.872 0.894 

Fund life over (10y, 15y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.854 0.826 0.822 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.984 0.919 0.901 
Prob(monthly/long-horizon alphas same sign) 0.928 0.879 0.868 

 Fund life over (15y, 28y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.862 0.801 0.677 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.993 0.906 0.809 
Prob(monthly/long-horizon alphas same sign) 0.913 0.842 0.728 
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Table 7: Long-horizon alpha versus short-horizon alpha and beta   
 
 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the SPDR S&P 
500 ETF (SPY) and compute its long-horizon beta against SPY over three investment horizons (1 year, 10 years, 
and the fund’s lifetime) using the modified Levhari and Levy (LL) approach detailed in Section 4.2. Lastly, we 
compute each fund’s long-horizon alpha using its long-horizon returns and the long-horizon beta. Panels A-C 
compare the monthly versus long-horizon fund alphas for all funds, for funds with monthly SPY beta above 1, and 
for funds with monthly SPY beta below 1, respectively. ***, ***, and * indicate that the mean long-horizon (1-year, 
10-year, or lifetime) alpha is statistically different than the mean monthly alpha at the 1%, 5% and 10% levels, 
respectively. Panel D presents the fraction of funds whose long-horizon and short-horizons differ by 1%, 2%, and 
5% per year, respectively.    
 
A-C: Summary statistics of long-horizon alpha and short-horizon alpha against SPY 

            Funds with Funds with 

      monthly SPY monthly SPY 
N Mean Median Std. dev.  All funds alpha > 0 alpha < 0 

Panel A: All funds 
Monthly alpha (%)  Fraction, monthly alpha > 0 

7689 -0.107 -0.051 0.464  0.409 1.000 0.000 
1-year alpha (%, monthly rate)  Fraction, 1-year alpha > 0 

7689 -0.160*** -0.079 0.486  0.355 0.856 0.008 
10-year alpha (%, monthly rate)  Fraction, 10-year alpha > 0 

7689 -0.057** -0.082 2.099  0.383 0.817 0.083 
Lifetime alpha (%, monthly rate) Fraction, lifetime alpha > 0 

7689 -0.188*** -0.115 0.725   0.358 0.761 0.080 
Panel B: Funds with monthly beta against SPY > 1 

Monthly alpha (%)  Fraction, monthly alpha > 0 
3153 -0.159 -0.085 0.538  0.358 1.000 0.000 

1-year alpha (%, monthly rate)  Fraction, 1-year alpha > 0 
3153 -0.268*** -0.149 0.562  0.251 0.701 0.000 

10-year alpha (%, monthly rate)  Fraction, 10-year alpha > 0 
3153 -0.217 -0.226 2.107  0.207 0.571 0.004 

Lifetime alpha (%, monthly rate)  Fraction, lifetime alpha > 0 
3153 -0.455*** -0.315 0.782   0.167 0.454 0.007 

Panel C: Funds with monthly beta against SPY < 1 
Monthly alpha (%)  Fraction, monthly alpha > 0 

4536 -0.071 -0.028 0.402  0.444 1.000 0.000 
1-year alpha (%, monthly rate)  Fraction, 1-year alpha > 0 

4536 -0.085*** -0.038 0.410  0.427 0.943 0.015 
10-year alpha (%, monthly rate)  Fraction, 10-year alpha > 0 

4536 0.054*** 0.002 2.087  0.506 0.956 0.146 
Lifetime alpha (%, monthly rate)  Fraction, lifetime alpha > 0 

4536 -0.002*** -0.007 0.617   0.491 0.933 0.138 
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Panel D: Fraction of funds whose long-horizon and short-horizon alphas differ significantly  
    Fraction of funds whose  

 Investment long-horizon and short-horizon alphas differ by at least 
N horizon 1% / year 2% / year 5% / year 

All funds 
7689 1 year 0.157 0.073 0.026 
7689 10 years 0.474 0.257 0.082 
7689 Lifetime 0.480 0.279 0.120 

Funds with monthly beta against SPY > 1 
3153 1 year 0.301 0.139 0.050 
3153 10 years 0.588 0.369 0.123 
3153 Lifetime 0.588 0.411 0.206 

Funds with monthly beta against SPY < 1 
4536 1 year 0.057 0.027 0.010 
4536 10 years 0.395 0.179 0.054 
4536 Lifetime 0.405 0.187 0.059 
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Figure A1 
TNA of International Equity Mutual Funds VS. Domestic Equity Mutual Funds  
This figure plots the aggregate TNA of U.S. equity funds that invest in domestic equities, the aggregate TNA of U.S. 
mutual funds that invest in international equities, and the TNA of international equity funds as a fraction of the total 
TNA of both international and domestic equity mutual funds.    
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Table A1: Lifetime fund returns by fund characteristics      
 
This table presents summary statistics of lifetime fund returns, sorted by each of five fund characteristics. Fund R-
squared is the R-squared of the regression of monthly excess fund return on monthly excess SPY return; Fund beta 
is the coefficient on excess SPY return. Expense ratio is the average monthly fund expense ratio. Fund return 
volatility and skewness are the standard deviation and the skewness of monthly fund returns. We compute lifetime 
buy-and-hold returns to the fund, and to the CRSP market portfolio, the SPDR S&P 500 ETF (SPY), and the one-
month T-Bill over the fund’s life. A fund outperforms a benchmark if its lifetime return is greater than benchmark 
returns over the fund’s life. We carry out t-test of whether the likelihood of a fund outperforming the market/SPY/T-
Bill equals a half.  ***, **, and * correspond to statistical significance at the 1%, 5% and 10% levels, respectively.   
 
A. Lifetime fund returns by R-squared of the regression of excess fund return on excess SPY return      

          Fund Market SPY 

  Outperform Outperform Outperform 
buy-and-

hold 
buy-and-

hold 
buy-and-

hold 
Decile R2 market SPY T-Bill return (%) return (%) return (%) 
1 0.292 0.205*** 0.235*** 0.471 77.41 154.50 141.68 
2 0.482 0.239*** 0.300*** 0.785*** 169.31 208.11 187.62 
3 0.569 0.298*** 0.360*** 0.780*** 299.64 286.49 259.73 
4 0.648 0.338*** 0.399*** 0.810*** 299.50 287.28 263.12 
5 0.720 0.343*** 0.378*** 0.774*** 235.99 237.86 217.50 
6 0.775 0.258*** 0.311*** 0.803*** 182.40 214.13 196.92 
7 0.822 0.229*** 0.298*** 0.796*** 201.14 250.12 228.96 
8 0.866 0.215*** 0.270*** 0.788*** 155.22 208.85 191.20 
9 0.909 0.150*** 0.215*** 0.814*** 147.27 202.69 186.58 
10 0.961 0.107*** 0.185*** 0.778*** 143.83 190.97 175.60 

 
 
B. Lifetime fund returns by fund beta against SPY       

          Fund Market SPY 

  Outperform Outperform Outperform 
buy-and-

hold 
buy-and-

hold 
buy-and-

hold 
Decile Beta market SPY T-Bill return (%) return (%) return (%) 
1 0.397 0.130*** 0.166*** 0.616*** 49.73 135.44 122.16 
2 0.632 0.166*** 0.230*** 0.857*** 126.32 192.28 172.43 
3 0.766 0.252*** 0.309*** 0.817*** 173.17 212.48 195.54 
4 0.866 0.256*** 0.315*** 0.814*** 204.11 232.34 214.46 
5 0.935 0.252*** 0.320*** 0.817*** 251.67 290.59 266.39 
6 0.984 0.241*** 0.309*** 0.810*** 239.89 266.88 244.22 
7 1.026 0.283*** 0.342*** 0.834*** 256.41 263.73 241.29 
8 1.081 0.287*** 0.358*** 0.826*** 256.06 263.63 241.65 
9 1.163 0.308*** 0.371*** 0.759*** 231.39 251.11 229.93 
10 1.553 0.204*** 0.233*** 0.450*** 123.03 132.58 120.90 
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C. Lifetime fund returns by fund expense ratio   
          Fund Market SPY

Expense Outperform Outperform Outperform buy-and-hold buy-and-hold buy-and-hold
Decile ratio (%) market SPY T-Bill return (%) return (%) return (%)
1 0.015 0.176*** 0.272*** 0.932*** 155.27 200.31 180.93
2 0.054 0.239*** 0.287*** 0.837*** 219.98 251.70 230.08
3 0.077 0.218*** 0.289*** 0.819*** 280.31 303.64 278.32
4 0.087 0.187*** 0.225*** 0.841*** 199.37 241.93 223.17
5 0.095 0.267*** 0.306*** 0.879*** 253.69 270.26 248.88
6 0.102 0.288*** 0.354*** 0.836*** 191.45 227.98 205.47
7 0.109 0.324*** 0.382*** 0.668*** 198.30 199.85 181.77
8 0.119 0.261*** 0.321*** 0.655*** 175.32 201.70 184.51
9 0.137 0.256*** 0.311*** 0.676*** 178.83 227.53 208.94
10 0.186 0.165*** 0.205*** 0.454*** 59.19 116.12 106.85
 
D. Lifetime fund returns by volatility of monthly fund return   

         Fund Market SPY 

 
Return 
standard Outperform Outperform Outperform 

buy-and-
hold 

buy-and-
hold 

buy-and-
hold 

Decile deviation market SPY T-Bill return (%) return (%) return (%) 
1 0.022 0.056*** 0.070*** 0.827*** 38.27 93.96 89.30 
2 0.032 0.120*** 0.160*** 0.862*** 94.78 149.41 137.02 
3 0.036 0.165*** 0.230*** 0.878*** 159.88 222.54 202.85 
4 0.040 0.216*** 0.313*** 0.874*** 267.30 332.29 302.48 
5 0.043 0.235*** 0.324*** 0.905*** 244.23 295.69 269.84 
6 0.046 0.306*** 0.376*** 0.797*** 258.59 268.96 245.01 
7 0.050 0.324*** 0.389*** 0.789*** 264.66 268.90 245.69 
8 0.055 0.397*** 0.455*** 0.718*** 274.29 252.79 230.71 
9 0.063 0.349*** 0.394*** 0.611*** 215.71 219.70 201.23 
10 0.096 0.215*** 0.241*** 0.338*** 94.10 136.84 124.83 

 
E. Lifetime fund returns by skewness of monthly fund return    

          Fund Market SPY 

 Return Outperform Outperform Outperform 
buy-and-

hold 
buy-and-

hold 
buy-and-

hold 
Decile skewness market SPY T-Bill return (%) return (%) return (%) 
1 -1.611 0.187*** 0.233*** 0.524 38.67 74.72 67.96 
2 -0.885 0.187*** 0.259*** 0.805*** 139.58 189.86 173.29 
3 -0.747 0.265*** 0.334*** 0.882*** 247.33 280.29 255.20 
4 -0.655 0.230*** 0.321*** 0.880*** 302.91 353.02 321.22 
5 -0.571 0.239*** 0.295*** 0.893*** 266.15 316.79 289.33 
6 -0.487 0.225*** 0.294*** 0.846*** 244.36 290.92 265.38 
7 -0.381 0.273*** 0.322*** 0.796*** 244.59 258.29 235.84 
8 -0.244 0.257*** 0.308*** 0.766*** 182.58 193.82 179.64 
9 -0.046 0.247*** 0.283*** 0.636*** 137.76 148.96 138.08 
10 0.476 0.269*** 0.302*** 0.571*** 107.86 134.42 123.04 
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Table A2: Long-horizon performance of international equity funds     
 
This table presents summary statistics of long-horizon and short-horizon returns to U.S. mutual funds that invest in 
international equities. Panel A reports summary statistics of fund expense ratios and TNA at the fund-month level, 
as well as monthly fund returns and monthly returns to three benchmarks: the Vanguard Total International Index 
Fund (VGTSX), the SPDR S&P 500 ETF return (SPY), and the one-month T-Bill rate. Panels B-D presents 
summary statistics of the international equity funds’ annual, decade, and lifetime performance, respectively. We 
compute buy-and-hold returns to the fund, the VGTSX fund, the SPDR S&P 500 ETF (SPY), and the one-month T-
Bill over three investment horizons: annum (1991 to 2018), decade (1991-1999, 2000-2008, 2009-2018), and the 
whole fund life. A fund outperforms a benchmark if its buy-and-hold return is greater than that of the benchmark 
over the period. We carry out t-test of whether the likelihood of a fund outperforming the market/SPY/T-Bill equals 
a half.  ***, **, and * correspond to statistical significance at the 1%, 5% and 10% levels, respectively.   
 
A: Summary statistics of monthly fund return, expense ratio and TNA    

  # fund-         

Variable months Mean Median Std. dev. Skewness 

Fund return (%), monthly 339987 0.487 0.537 5.259 -0.375 

VGTSX return (%), monthly 339987 0.467 0.726 4.801 -0.590 

SPY return (%), monthly 339987 0.763 1.212 4.151 -0.675 

Rf return (%), monthly 339987 0.166 0.100 0.174 0.609 

Outperform VGTSX 339987 0.496 0.000 0.500 0.015 

Outperform SPY 339987 0.459 0.000 0.498 0.164 

Outperform T-Bill 339987 0.536 1.000 0.499 -0.143 

Fees (%), monthly 339987 0.117 0.116 0.047 0.818 

TNA ($B), monthly 335925 1.063 0.139 5.824 23.454 
 
 
B. Summary statistics of annual fund returns  

Variable 
# Fund-
years Mean Median Std. dev. Skewness 

Fund life (months) 30746 11.1 12.0 2.4 -2.8 

Outperform VGTSX 30746 0.484*** 0.000 0.500 0.065 

Outperform SPY 30746 0.392*** 0.000 0.488 0.444 

Outperform T-Bill 30746 0.553*** 1.000 0.497 -0.212 

Fund buy-and-hold return (%) 30746 6.47 4.51 23.45 0.936 

VGTSX buy-and-hold return (%) 30746 5.82 5.03 19.07 -0.403 

SPY buy-and-hold return (%) 30746 9.13 11.80 16.45 -0.784 
 

C. Summary statistics of decade fund returns 

Variable 
# Fund-
periods Mean Median Std. dev. Skewness 

Fund life (months) 5179 65.6 62.0 39.8 0.0 

Outperform VGTSX 5179 0.479*** 0.000 0.500 0.084 

Outperform SPY 5179 0.268*** 0.000 0.443 1.048 

Outperform T-Bill 5179 0.584*** 1.000 0.493 -0.342 

Fund buy-and-hold return (%) 5179 43.16 21.74 80.05 2.315 

VGTSX buy-and-hold return (%) 5179 35.30 27.56 51.75 0.662 

SPY buy-and-hold return (%) 5179 91.76 39.14 124.65 0.882 
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D. Summary statistics of lifetime fund returns 

Variable 
# Fund-
periods Mean Median Std. dev. Skewness 

Fund life (months) 2892 117.6 90.0 89.3 0.9 

Outperform VGTSX 2892 0.475*** 0.000 0.499 0.098 

Outperform SPY 2892 0.139*** 0.000 0.346 2.083 

Outperform T-Bill 2892 0.679*** 1.000 0.467 -0.769 

Fund buy-and-hold return (%) 2892 91.56 31.70 200.09 7.133 

VGTSX buy-and-hold return (%) 2892 68.73 34.24 92.10 1.783 

SPY buy-and-hold return (%) 2892 186.71 112.61 263.86 2.543 
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Table A3: Comparing annual betas against the market estimated using the modified LL approach to annual 
beta estimated based on time-series return regressions.     
 
For those mutual funds with available returns in at least 10 calendar years, we estimate the 1-year beta against the 
market (MKT) by estimating standard time series regressions and by the modified Levhari and Levy (LL) 
approach described in Section 4.2.   
 

Variable N Mean Median Std. dev. Skewness 

All funds 
Monthly beta estimated by time series 
regression 4080 0.916 0.940 0.293 0.444 
Annual beta estimated by modified LL method 4080 0.901 0.934 0.257 -0.205 
Annual beta estimated by time series regression 4080 0.893 0.881 0.308 0.868 

Funds with monthly beta against MKT > 1 
Monthly beta estimated by time series 
regression 1493 1.187 1.124 0.219 2.997 
Annual beta estimated by modified LL method 1493 1.150 1.118 0.137 1.839 
Annual beta estimated by time series regression 1493 1.151 1.097 0.282 2.316 

Funds with monthly beta against MKT < 1 
Monthly beta estimated by time series 
regression 2587 0.759 0.810 0.201 -1.418 
Annual beta estimated by modified LL method 2587 0.757 0.803 0.192 -0.906 
Annual beta estimated by time series regression 2587 0.743 0.759 0.207 -1.424 
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Table A4: Long-horizon beta versus short-horizon beta against the market  
 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the market 
(MKT) and compute its long-horizon beta against the market over three return horizons (1 year, 10 years, and the 
fund’s lifetime) using the modified Levhari and Levy (LL) approach described in Section 4.2. This table 
compares the monthly versus long-horizon fund betas for all funds, for funds with monthly market beta above 1, and 
for funds with monthly market beta below 1, respectively. ***, ***, and * indicate that the mean long-horizon (1-
year, 10-year, or lifetime) beta is statistically different than the mean monthly beta at the 1%, 5% and 10% levels, 
respectively.    
 

N Mean Median Std. dev. Skewness   Mean Median Std. dev. Skewness 
All funds 

 Monthly beta  1-year beta 
7689 0.936 0.941 0.342 1.034  0.901*** 0.929 0.271 -0.114 

 10-year beta  Lifetime beta 
7689 0.813*** 0.761 0.458 1.577  0.877*** 0.816 0.495 1.833 

Funds with monthly beta against MKT > 1 

 Monthly beta  1-year beta 
2929 1.233 1.138 0.301 2.940  1.155*** 1.119 0.158 1.724 

 10-year beta  Lifetime beta 
2929 1.101*** 1.038 0.484 1.469  1.236 1.085 0.532 1.941 

Funds with monthly beta against MKT < 1 

 Monthly beta  1-year beta 
4760 0.753 0.811 0.214 -1.701  0.746*** 0.793 0.198 -0.944 

10-year beta Lifetime beta 
4760 0.636*** 0.619 0.336 1.832   0.656*** 0.657 0.305 1.222 
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Table A5:   Do short and long-horizon alphas against the market have the same sign?   
 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the market 
(MKT) and compute its long-horizon beta against the market over three investment horizons (1 year, 10 years, and 
the fund’s lifetime) using the modified Levhari and Levy (LL) approach described in Section 4.2. Lastly, we 
compute each fund’s long-horizon alpha using its long-horizon returns and the long-horizon beta. This table presents 
probabilities regarding the sign of the monthly alpha and long-horizon alpha.  
 

Long-horizon alpha 1-year 10-year Lifetime 

 All funds 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.838 0.780 0.772 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.991 0.937 0.900 
Prob(monthly/long-horizon alphas same sign) 0.937 0.882 0.855 

 Fund life over [1y, 5y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.841 0.837 0.873 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.983 0.932 0.978 
Prob(monthly/long-horizon alphas same sign) 0.948 0.909 0.953 

 Fund life over (5y, 10y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.803 0.793 0.829 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.992 0.916 0.911 
Prob(monthly/long-horizon alphas same sign) 0.942 0.884 0.889 

 Fund life over (10y, 15y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.878 0.821 0.852 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.995 0.956 0.879 
Prob(monthly/long-horizon alphas same sign) 0.953 0.908 0.869 

 Fund life over (15y, 28y] 

Prob(long-horizon alpha > 0 | monthly alpha > 0) 0.837 0.736 0.680 
Prob(long-horizon alpha < 0 | monthly alpha < 0) 0.997 0.957 0.783 
Prob(monthly/long-horizon alphas same sign) 0.913 0.841 0.729 
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Table A6: Long-horizon alpha versus short-horizon alpha against the market and beta   
 
We compute each fund’s monthly beta by regressing excess monthly fund return on excess return to the market 
(MKT) and compute its long-horizon beta against the market over three investment horizons (1 year, 10 years, and 
the fund’s lifetime) using the modified Levhari and Levy (LL) approach described in Section 4.2. Lastly, we 
compute each fund’s long-horizon alpha using its long-horizon returns and the long-horizon beta. Panels A-C 
compare the monthly versus long-horizon fund alphas for all funds, for funds with monthly market beta above 1, and 
for funds with monthly market beta below 1, respectively. ***, ***, and * indicate that the mean long-horizon (1-
year, 10-year, or lifetime) alpha is statistically different than the mean monthly alpha at the 1%, 5% and 10% levels, 
respectively. Panel D presents the fraction of funds whose long-horizon and short-horizons differ by 1%, 2%, and 
5% per year, respectively.  
 
A-C: Summary statistics of long-horizon alpha and short-horizon alpha against the market 
           Funds with Funds with

    monthly MKT monthly MKT
N Mean Median Std. dev. All funds alpha > 0 alpha < 0

Panel A: All funds 
Monthly alpha (%)  Fraction, monthly alpha > 0 

7689 -0.141 -0.077 0.454 0.353 1.000 0.000
1-year alpha (%, monthly rate)  Fraction, 1-year alpha > 0 

7689 -0.189*** -0.110 0.472  0.302 0.838 0.009
10-year alpha (%, monthly rate)  Fraction, 10-year alpha > 0 

7689 -0.119 -0.134 1.993  0.316 0.780 0.063
Lifetime alpha (%, monthly rate)  Fraction, lifetime alpha > 0 

7689 -0.232*** -0.140 0.764  0.337 0.772 0.100
Panel B: Funds with monthly beta against MKT > 1 

Monthly alpha (%)  Fraction, monthly alpha > 0 
2929 -0.215 -0.138 0.543 0.295 1.000 0.000

1-year alpha (%, monthly rate)  Fraction, 1-year alpha > 0 
3153 -0.302*** -0.188 0.539  0.213 0.716 0.002

10-year alpha (%, monthly rate)  Fraction, 10-year alpha > 0 
3153 -0.304*** -0.291 1.845  0.155 0.512 0.005

Lifetime alpha (%, monthly rate)  Fraction, lifetime alpha > 0 
2929 -0.575*** -0.394 0.878  0.126 0.426 0.000

Panel C: Funds with monthly beta against MKT < 1 
Monthly alpha (%)  Fraction, monthly alpha > 0 

4760 -0.095 -0.049 0.382 0.389 1.000 0.000
1-year alpha (%, monthly rate)  Fraction, 1-year alpha > 0 

4536 -0.110*** -0.064 0.400  0.357 0.895 0.014
10-year alpha (%, monthly rate)  Fraction, 10-year alpha > 0 

4536 0.009*** -0.037 2.080  0.415 0.905 0.103
Lifetime alpha (%, monthly rate)  Fraction, lifetime alpha > 0 

4760 -0.021*** -0.020 0.593  0.468 0.934 0.171
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Panel D: Fraction of funds whose long-horizon and short-horizon alphas differ significantly  
    Fraction of funds whose  

 Investment long-horizon and short-horizon alphas differ by at least 
N horizon  1% / year 2% / year 5% / year 

All funds 
7689 1 year 0.141 0.065 0.025 
7689 10 years 0.489 0.263 0.087 
7689 Lifetime 0.490 0.288 0.123 

Funds with monthly beta against MKT > 1 
2929 1 year 0.259 0.126 0.053 
2929 10 years 0.731 0.441 0.142 
2929 Lifetime 0.624 0.454 0.233 

Funds with monthly beta against MKT < 1 
4760 1 year 0.068 0.027 0.009 
4760 10 years 0.341 0.154 0.053 
4760 Lifetime 0.407 0.187 0.056 

 
 
 

  

 
 
 


